ExampleAlgorithm#
- class ExampleAlgorithm#
Bases:
Algorithm
[Iterable
[Comparable
],int
,Optional
[Iterable
[Comparable
]]]- __init__()#
Methods
__init__
()get_worst_case_arguments
(input_size)Way to generate keyword arguments for this class' run_algorithm method corresponding to algorithm's worst case scenario.
increment_n_ops
([increment])Convenience method to increment n_ops count of the given complexity object.
Convenience method to reset n_ops count of the given complexity object.
run_algorithm
(input_instance[, verbosity_level])The main run function of each algorithm.
Attributes
- rtype:
- rtype:
- rtype:
str
- rtype:
str
- rtype:
str
- rtype:
bool
- rtype:
int
- rtype:
str
- rtype:
str
- rtype:
str
- rtype:
str
- property algorithm_family: AlgorithmFamily#
- Return type:
- property algorithm_properties: AlgorithmProperties#
- Return type:
- property average_case_time_complexity: str#
- Return type:
str
- property best_case_description: str#
- Return type:
str
- property best_case_time_complexity: str#
- Return type:
str
- get_worst_case_arguments(input_size)#
Way to generate keyword arguments for this class’ run_algorithm method corresponding to algorithm’s worst case scenario. Output of this function has to be accepted by run_algorithm() and has to contain a pair ‘input_instance’: ProblemInstance with the value having given InputSize.
- Parameters:
input_size (InputSize) – Desired input size (form depends on specific algorithm).
- Returns:
run_algorithm_kwargs – A dictionary with keyword arguments for the run_algorithm method.
- Return type:
dict[str, Any]
- increment_n_ops(increment=1)#
Convenience method to increment n_ops count of the given complexity object.
- Return type:
None
- property is_deterministic: bool#
- Return type:
bool
- property n_ops: int#
- Return type:
int
- property name: str#
- Return type:
str
- reset_n_ops()#
Convenience method to reset n_ops count of the given complexity object.
- Return type:
None
- run_algorithm(input_instance, verbosity_level=0, *args, **kwargs)#
The main run function of each algorithm. The algorithms should be able to internally count number of ops and should reset self.n_ops to 0 on each use of this method.
- Parameters:
input_instance (ProblemInstance) – Instance on which to run the algorithm.
verbosity_level (int (default 0)) – Select the amount of information to print throughout run of the algorithm. One of 0, 1, 2 with 0 typically referring to no printing, 1 leading to print of given ProblemInstance before and after and 2 meaning every step.
*args (Any) – Additional arguments passed to the algorithm.
**kwargs (Any) – Additional keyword arguments passed to the algorithm.
- Returns:
result – Returns boolean value representing whether the algorithm terminated successfully and some form of input processed by the algorithm if relevant.
- Return type:
tuple[bool, Optional[ResultInstance]]
- property space_complexity: str#
- Return type:
str
- property worst_case_description: str#
- Return type:
str
- property worst_case_time_complexity: str#
- Return type:
str